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Abstract 

Geoscientists now live in a world rich with digital data and methods, and their 
computational research cannot be fully captured in traditional publications. The 
Geoscience Paper of the Future (GPF) presents an approach to fully document, 
share, and cite all their research products including data, software, and 
provenance. This article proposes best practices for GPF authors to make data, 
software, and methods openly accessible, citable, and well documented. The 
publication of digital objects empowers scientists to manage their research 
products as valuable scientific assets in an open and transparent way that 
enables broader access by other scientists, students, decision makers, and the 
public. Improving documentation and dissemination of research will accelerate 
the pace of scientific discovery by improving the ability of others to build upon 
published work. 

 

August 18, 2016 

 

Key Points 

• Describes best practices for documenting research to support open science  
• Publishing provenance with software and data improves science transparency 
• Promotes approaches to achieve equitable credit for all digital research products  

 
 

Keywords: Geoscience paper of the future; Reproducibility; Data sharing; 
Software reuse; Provenance; Workflow; Data Science 
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1. Introduction 

Increasingly, scientists are asked to share their data, software, and other results of their research. 
These requests, which used to come only from fellow scientists, are now coming from a variety 
of sources including funders, publishers, and journalists. The ultimate goal of this emerging 
movement is not only to make research products openly accessible to interested parties, but also 
to enhance reproducibility, collaboration, and the directions and capability of future research. 
However, in order to be effective, making research products accessible requires careful data, 
software, and provenance management planning as well as novel approaches that enable credit 
for these new forms of scientific contributions. It also requires awareness and social change in 
the scientific community, including clear communication of the benefits and best practices that 
may be new to geoscientists.  

This paper presents a core set of best practices, reports on practical challenges in their 
implementation, and suggests practical workarounds when they cannot be followed. This work 
resulted from the efforts of the authors of this article in creating a Geoscience Paper of the 
Future (GPF) in their respective geoscience disciplines, in collaboration with computer scientists 
that guided them through the state of the art in digital scholarship. The authors span diverse 
geoscience disciplines, each with different kinds of data, community standards, and stages of 
adoption of cyberinfrastructure.  

The implementation of best practices for digital publication of scientific research products (such 
as datasets, software, methods, etc.) requires effort. While there is a learning curve to 
understanding best practices for publishing research products, the curve is not as steep as it may 
initially seem.  New infrastructure supporting the effective and successful management of these 
digital objects is being developed to make these tasks increasingly reasonable and manageable, 
and to ensure future availability and sustainability.   

The goal of this paper is to instigate a nucleus of early adopters who will be the first to reap the 
benefits from open science, digital publication, and new forms of credit for their digital 
contributions to science. We believe that the best practices described in this paper will streamline 
data analysis and reporting in ways that will propel the geosciences forward in new and 
unanticipated directions. 

2. Background and Motivation 

The impact that digital publications can have on traditional science scholarship has been 
discussed in many forums. This section introduces key ideas and recent findings that serve as a 
motivation for our work.  Although the views presented here may not be new to digital 
scholarship researchers, they have had limited dissemination and early adoption in geosciences. 
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Our goal is to disseminate these ideas and more importantly to articulate best practices and make 
them easy to embed into the daily routines of geoscientists. 

2.1 A Vision for Future Geoscience Papers 
The publication of research papers is slowly changing to adapt to the digital age. We envision 
that in the near future (5-10 years), scientists will use radically new tools to author papers and 
disseminate information about the process and products of their research. These tools will 
document and publish the workflow as well as all the associated digital objects (data, software, 
etc.) that form the basis of a paper. This evolution in research publication will substantially 
improve scientific communication, promote a fair basis for crediting science contributions, and 
offer a transparent way for other scientists to evaluate and even reproduce the research. Today, 
several research tools exist to perform these tasks, but they are not routinely used and have not 
been integrated into the typical publication workflow in geosciences. 

It is our view that in the future publishers will accept submissions that include not only text and 
figures, but also the data (both final and intermediate results), software, and other digital objects 
resulting from the study. These objects will be interlinked and contain metadata that allow 
readers to understand how the data and software were used to generate the study’s results. 
Today, many journals accept supplemental datasets with an article, and some journals accept 
software or other digital objects, but geoscience journals do not require the complete details 
necessary to understand the connections and provenance between the data, software, and results 
of the research. 

We envision that reproducibility (i.e., being able to re-create a study’s results) and provenance 
(i.e., the digital documentation of what data and methods were used to obtain a new result) will 
be key review criteria for future geoscience publications. Readers of future geoscience papers 
will be able to actively interact with a published article, for example by reorganizing the data or 
altering the computations that produced a figure. It should be straightforward to reproduce the 
results of a study because the connections between data, software, and resulting figures and 
findings will be more clearly expressed and documented in metadata. It will also be easier to 
build from past work by taking published methods/models associated with a paper and 
modifying them or running them with new data. Today, readers simply get a static paper, and in 
the rare cases where data are downloadable, reproduction of the analysis requires significant 
additional work or may not even be possible. 

Another aspect of this vision of future geoscience papers is that these publications will include 
citations to the data and software resources used to complete the study. Although such resources 
are an important contribution to science, data producers and software developers often do not get 
credit for their work in the same way that authors of scientific papers get credit through citations. 
In the future, data and software should be citable resources with unique identifiers that allow all 
publications that build on their work to properly acknowledge them. This would reward those 
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who create the data and software that form the basis of much of geoscience research and would 
encourage the production of high-quality products that can be reused by others to amplify the 
research potential of shared data and software.  

2.2 A Changing Environment for Scientific Research 
There are several major forces that push scientists to make their research open and accessible. 
We discuss here changes in publishing, the public’s interest in science, funding, and scientists 
themselves.  

2.2.1 Scientific Publishing Is Changing 
Many journals accommodate the publication of datasets, and in some cases other associated 
materials including code and other research products. Studies show that journals requiring a 
repository submission number as a condition of publication increase the likelihood of sharing 
data [Piwowar and Chapman, 2009]. Unfortunately, even in a journal with clear data sharing 
policies only one out of ten authors made their datasets available upon request [Savage and 
Vickers 2009], which argues for data being published when a paper is published.  

Publishers often have specific data and software requirements.  The American Geophysical 
Union (AGU) does include research code in its definition of “data” that must be shared for 
publication in its journals [AGU 2013; Hanson 2014]. More and more journals recognize the 
importance of documenting software in publications (e.g., [Nature 2014a]). Author guidelines for 
the Geoscientific Model Development journal require publication of code with documentation 
and a license, and reviewers are required to run the code with test cases supplied by the authors 
and comment on the ease of access [GMD 2013]. In addition to reproducibility and transparency, 
a major driver is the need for traceability across new versions of a model. 

Although data papers and software papers are beginning to emerge as citable articles, most data 
and software in geosciences go unpublished and uncited (e.g., [Reichman et al 2011]). In data 
papers, authors write a scientific paper on the production and analysis of a dataset that then 
becomes the recommended citation for the data themselves, although this still remains 
problematic for many datasets used in a primary scientific publication (e.g., [Pope et al 2014]). 
Journals devoted solely to describing software are beginning to emerge [JORS 2015; SoftwareX 
2015; SCFBM 2015].  

The record of origin or provenance of the results of published articles is often only provided at a 
high level in current articles, missing important details due to lack of space or to the ambiguity 
inherent in natural language text. Interactive notebooks are gaining popularity, including 
iPhython Notebook for Python [Shen 2014], Sweave for R in Latex [Leisch 2002; Falcon 2007], 
and the Computable Document Format for Mathematica [Wolfram 2015]. Executable papers are 
designed to enable readers to run experiments [Koop et al 2011]. Many scientific workflow 
systems now include the ability to publish provenance records [Taylor et al 2007; Koop et al 
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2011; Mesirov 2010]. The Open Provenance Model was developed by the scientific workflow 
community and has been used extensively [Moreau et al 2011], paving the way for the more 
recent W3C PROV standard for open publication of provenance [Moreau et al 2013]. 

Publishers have been interested in improving digital scholarship practices. New approaches have 
been developed to document scientific articles so that they are more interactive than just a static 
PDF. For example, ReadCube allows readers can navigate the citations through cross-reference 
facilities across publishers [ReadCube 2015]. Other experimental efforts include the Executable 
Papers Challenge (e.g., [Van Gorpa and Mazanekb, 2011; Nowakowskia et al., 2011; Gavish and 
Donoho 2011]), although this effort is focused on Computer Science, and the Article of the 
Future [Zudilova-Seinstra 2013] which focuses on enhanced interaction between the reader and 
the publication (e.g., inclusion of published maps in Google maps, ability to zoom in on figures 
and select datapoints).  

Making all digital research products citable is also a major concern of publishers. Studies have 
found that more than half of the resources (reagents, organisms, etc.) mentioned in biomedical 
articles are not uniquely identifiable [Vasilevsky et al 2013]. However, digital objects can be 
assigned persistent unique identifiers, such as Permanent URLs (PURLs) or Digital Object 
Identifiers (DOIs) [DeRisi et al 2013], for unique identification. In addition, authors are also 
often assigned a unique identifier to distinguish among authors with identical names. 

Scientific publications are increasingly linked to other digital information on the Web. Some 
publishers are linking digital assets to structured web data about people, locations, and all kinds 
of scientific objects (e.g., [Nature 2015]). 

2.2.2 Scientists Are Changing 
Scientific organizations encourage open science [Royal Society 2012; Nature 2014b; Science 
2014]. Many research communities, editorials, and individual researchers have eloquently 
advocated for open science (e.g., [Costello et al 2013; Nature Geoscience 2015; Michener 2015; 
Bourne 2010]). For every reason given for not sharing data or code, there are strong counter 
arguments (e.g., [Barnes 2010; Costello et al 2013; Nature Geoscience 2015; Michener 2015]). 

Publishing and sharing data and software leads to better science [Easterbrook 2014; Joppa et al 
2013]. Natural language descriptions of methods in papers have tremendous ambiguity that can 
lead to different interpretations and therefore different outcomes [Ince et al 2012]. Focusing on 
geosciences as a case study, errors were reported in different implementations of the same 
algorithms  [Hatton and Roberts 1994; Hatton et al 1998; Hatton 1997]. This ambiguity is 
ingrained in natural language descriptions and consequently is unavoidable, so it is best to 
publish the software and provenance in addition to the data [Nekutrenko and Taylor 2012].  

A recent survey found that researchers want to be recognized more for their development of 
research resources for the community than for their invited presentations or the prestigious 



 7 

positions of their students [Nature Metrics 2010]. Scientists are also recognizing the increased 
visibility and credit for their open science practices. A computational harmonic analysis research 
lab, WaveLab, reported on more than a decade of publications that included not only data and 
code for the paper but also examples, documentation, and credits [Donoho et al 2009]. Their lab 
papers were on the top few cited mathematical sciences papers in the year they appeared, and 
such practices were described by the head of the lab as key reasons for becoming one of the top 5 
most-cited authors in mathematics in the 1990s [Donoho 2002; Donoho and Huo 2004]. 
Important innovations in scientific credit and impact measures are beginning to emerge [Priem et 
al 2010]. 

2.2.3 The Public’s Interest in Science Is Changing 
Science is a costly enterprise, and opening science creates new opportunities to leverage 
resources. Open sharing of research products enables the democratization of science, and 
satisfies the public’s interest in scientific data sharing [Soranno et al 2014]. 

Opening science to the public enables scientists to harness massive amounts of volunteer effort 
from people who are able to make meaningful contributions [Savage 2012]. Many citizen science 
projects have been wildly successful, including eBirds [McCaffrey 2005], Zooniverse [Lintott et 
al 2010], and FoldIt [Khatib et al 2011]. In these projects, volunteers with no particular 
background in science create useful data for scientists.  In some projects, citizen scientists have 
created their own science questions based on personal motivations and in some cases have made 
scientific contributions and are co-authors of publications in first-rate journals [Cardamone et al 
2009; Fischer et al 2012]. The Polymath [Nielsen 2011] project provides a massively 
collaborative online site wherein mathematicians collaborate with high-school teachers, 
engineers, and other volunteers to solve mathematics conjectures and open problems by 
decomposing, reformulating, and contributing to all aspects of a problem. Several citizens 
collaborated to discover a gene mutation that was of interest to their families, learning to use 
science-grade data and tools and collecting additional data from volunteers [Rocca et al 2012]. 

Open science practices also allow academic and industry to collaborate, creating beneficial and 
cost-effective synergies and broadening the societal impact of scientific research [Woelfle et al 
2011].  

Finally, there is significant effort wasted when research results are not shared [Macleod 2014], 
which is a practical and ethical concern for research supported by public funds. 

2.2.4 Funding Agencies Are Changing 
In response to a massive petition to make the results of federally-funded research publicly 
accessible, the US Office of Science and Technology issued a mandate for all government 
agencies that fund research to put a plan in place to release all research products so they are 
publicly accessible [Holdren 2013]. US government funding agencies are responding to this 
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mandate by developing plans to require research products to be openly published. The US 
National Science Foundation (NSF) released a Public Access Plan in March 2015 [NSF 2015] 
requiring that all research products be published for grants awarded after January 2016. The NSF 
already has a mandatory Data Management Plan in place, although it is not formally enforced. 
Plans are underway to determine how other research products are to be released. Other US 
agencies that fund geosciences research, such as the National Aeronautics and Space 
Administration (NASA), National Oceanic and Atmospheric Administration (NOAA), and the 
US Geological Survey (USGS), have issued similar planning documents [NASA 2015; NOAA 
2015; USGS 2015b].  

Some agencies are aggressively pursuing changes to project reviewing and evaluation processes.  
For example, the National Institutes of Health (NIH) are experimenting with a variety of 
approaches to make science more open [Collins and Tabak 2014], including a pilot on having a 
special reviewer in each panel that checks the validity of the published articles that are the 
premise for a proposal. The NIH are also enhancing transparency through a new Data Discovery 
Index for unpublished primary data, online forums for discussion of published articles, and 
author checklists to facilitate verification by reviewers. 

2.3 The Reproducibility Crisis 
Scientific articles describe computational methods informally, often requiring a significant effort 
from others to understand and to reuse. Attempts to replication of published work naturally 
reveal uncertainties, which enable further scientific progress [Jasny et al 2011].  It is useful to 
distinguish between replication under identical conditions but different testers (repeatability), 
and replication with different testers and testing conditions (reproducibility), although the 
terminology used in different fields is not always consistent [Kenett and Shmueli 2015]. 
Reproducibility can be challenging in some disciplines such as in ecology, but it can be attained 
and has significant benefits [Ellison 2010; Ryan 2011].  Reproducibility is a cornerstone of the 
scientific method, so it is important that reproducibility be possible not just in principle but in 
practice in terms of time and effort to the original team and to the reproducers. The 
reproducibility process can be so difficult and time consuming that it has been referred to as 
“forensic” research [Baggerly and Coombes 2009]. Studies have also shown that reproducibility 
is in many cases not achievable from the article itself, even when datasets are published [Bell et 
al 2009; Ioannidis 2005; Ioannidis et al 2009]. In a recent effort in cancer biology to reproduce 
50 important papers the slow response from authors to requests to release data made the effort 
difficult [Van Noorden 2015], which argues for requiring the publication of data when the paper 
is published.  Without access to the source codes for the papers, reproducibility has been shown 
elusive [Hothorn and Leisch 2011; Hey and Payne 2015]. In a recent study, only 11% of selected 
landmark papers in cancer research were found reproducible [Begley and Ellis 2012]. An internal 
survey at Bayer pharmaceuticals found that about two-thirds of their projects are canceled 
because of inconsistencies during attempts to reproduce published research [Prinz et al 2011]. In 
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this era of big data, computational processes are becoming increasingly more complex and more 
challenging to reproduce [Nature 2012a].  

The justification of reproducible research has received increasing attention, particularly in 
climate science [Santer et al 2011]. The latest Coupled Model Intercomparison Project Phase 5 
(CMIP5) provides vast amounts of model simulations useful for scrutinizing the past and future 
climate change [Taylor, 2012]. The computational expense and size of outputs for CMIP5 are 
much larger than its previous phase, CMIP3, due to the high resolution and complicated 
processes included in CMIP5 models. As more models are publicly available for intercomparison 
projects, it is expected that major climate science journals require sharing the data analysis 
procedure in publications and making analysis results reproducible and applicable to similar 
datasets. Retractions of publications do occur more often than is desirable [Roston 2015]. Indeed, 
Fang and Casadevall [2011] proposed tracking the “retraction index” of scientific journals to 
indicate the proportion of published articles that are later found to be problematic. In psychology, 
where several important studies have been called into question [Yong 2012], labs have 
volunteered to do replication projects in collaboration with the original researchers [Schooler 
2014]. The Reproducibility Initiative offers to do validation studies to replicate papers of interest 
[Baker 2012]. Ultimately, open sharing of data, code, and provenance will allow colleagues and 
reviewers to examine papers more closely and will increase validation of scientific research. 

Computational reproducibility is a relatively modern concept. The Stanford Exploration Project 
led by Jon Claerbout published an electronic book containing a dissertation and other articles 
from their geosciences lab [Claerbout and Karrenbach 1992; Claerbout 2006]. The lab adopted 
“Reproducible Electronic Documents” (ReDocs), with sets of make rules that help build and run 
the application from scratch and take care of temporary files [Schwab et al 2000]. They 
described 3 degrees of reproducibility: easily reproducible (ER) if it can be easily re-run within 
10 mins, conditionally reproducible (CR) if it requires proprietary data, licensed software, or 
more than 10 mins to run, and non-reproducible (NR) if it is material that is manually created 
(e.g., a figure). Advocates of reproducibility have grown over the years in many disciplines, from 
signal processing [Vandewalle et al 2009] to computational harmonic analysis [Donoho et al 
2009] to psychology [Spies et al 2012]. Organized community efforts include reproducibility 
tracks at conferences [Manolescu et al 2008; Bonnet et al 2011; Wilson et al 2012], 
reproducibility editors in journals [Diggle and Zeger 2009; Peng 2009], and numerous 
community workshops and forums (e.g., [Bourne et al 2012]). Repositories of shared workflows 
enable scientists to reuse workflows published by others and facilitate reproducibility, although 
these repositories do not yet have significant uptake in geosciences [De Roure et al 2009; Missier 
et al 2010; Garijo et al 2014]. Other active research in this area is addressing a range of topics 
including copyright [Stodden 2009], privacy [Baker et al 2010], social [Yong 2012] and 
validation issues [Guo 2012].  
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The recommendations for making scientific research reproducible generally agree on requiring 
the publication and documentation of data, software, and methods [Baggerly and Coombes 2011; 
Claerbout 2006; Donoho et al 2009; Garijo et al 2013]. Advocates also propose broader changes 
such as adopting collaborative research practices, creating a replication culture, and training the 
scientific workforce [Ioannidis 2014]. Reproducibility requirements would help principal 
investigators be more accountable for the work in their labs [Nature 2012b]. [Russell 2013] 
proposes to tie grant funding to replication, since that work will be more likely to have increased 
returns.  There is a need for better infrastructure beyond current tools and services [LeVeque et 
al. 2009; Pebesma et al., 2012]. 

[Donoho 2010] mentions several important advantages of reproducibility, including improved 
work habits since others can examine the work, improved teamwork due to more efficient 
communication, greater impact since others can easily reuse the work, improved continuity since 
others can build on the work, and responsibility to taxpayers that the work is preserved.  

Some publishers are agreeing to new guidelines for journals to develop author checklists that 
promote reproducibility [Nature 2014a; Science 2014; Nature 2013], sometimes in coordination 
with funding agencies [NIH 2015].  

2.4 Digital Scholarship in the Geosciences 
Despite the notable efforts mentioned above, the geosciences are still behind in the practice of 
digital scholarship. Why the sluggish uptake? 

Open science requires work that is often challenging for individual scientists to undertake. Credit 
for data, software, and other digital research products that benefit the scientific community must 
be recognized, particularly in academic promotion cases [Harley 2013].  Policy issues and the 
role of journals and funding agencies are discussed in recent studies [LeVeque et al., 2009, 
Studdon et al, 2013].  Open science must be a community effort involving scientists, publishers, 
and funders [Kattge et al 2014].  These are important issues that are being seriously considered 
by the community, and will bring about significant changes in scientific practice and publications 
in the coming years.  

In geosciences in particular, a significant challenge is the effort involved in evolving a 
traditionally descriptive and field-centric discipline. There is always a cost in documenting any 
research product. The “why” and “how” of an artifact are ideally captured but this takes effort. 
Recognizing that there is a cost to documenting anything, we need to realize that researchers 
seem to altruistically perform these tasks despite the associated commitments and it may just be 
a matter of education and culture. No one would have imagined the open source movement and 
how it motivates programmers to release well-documented code to enable others to build on their 
work. Such endeavors are trending in data-intensive fields such as bioinformatics and computer 
science.  In geosciences, sub-disciplines such as climate modeling and geologic mapping have 
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only recently begun transitioning to digital methods. Geoscience researchers also need the 
mechanisms, infrastructure, and benefits to transition into modern digital scholarship practices.  

Another major challenge is that there is a diversity of sources for best practices, and none are 
very familiar or easily accessible to geoscientists. Although there are organizations that promote 
recommendations for data and software sharing, citation, and documentation, such as the 
Federation of Earth Science Information Partners (ESIP) and the Research Data Alliance (RDA) 
among others, they tend to reach people who focus on data management and informatics. 
Publishers announce new guidelines and requirements for their journals in response to those 
recommendations, but they tend to be very minimal in order to reduce the burden on authors. 
These guidelines are changing rapidly, in concert with changes on their business models given 
the open access trends in science mentioned above. In the end, many planned recommendations 
are still under development, particularly those concerning the description and citation of 
software, physical samples, and digital mapping and other visualizations. 

Finally, another major factor is the lack of awareness of best practices and of opportunities to 
learn about them. Geosciences researchers by and large have minor familiarity with software 
sharing practices and little knowledge or enthusiasm about data sharing [Reichman et al 2011]. 
There exist only rare opportunities to learn about digital scholarship in practice. Therefore, the 
dissemination of best practices and new approaches to publishing research results in the digital 
age, and of the benefits associated with open publication and sharing of data and other research 
products, are both greatly needed.  

This article aims to overcome these barriers by articulating and disseminating best practices, and 
by suggesting how to implement them in ways that are realistic to accomplish in writing a 
scientific article today reaching to become a geoscience paper of the future. 

3. The Geoscience Paper of the Future (GPF) 

We propose a characterization of the Geoscience Paper of the Future (GPF) that aims to capture 
the core concepts behind open science, reproducibility, and modern digital scholarship. A GPF 
intends to satisfy the following requirements: 

• Make data reusable through publication in a public repository, with documentation 
(metadata), a clear license specifying conditions of use, and citable using a unique and 
persistent identifier. 

• Make software reusable through publication in a public repository, with documentation, 
a license for reuse, and citable with a unique and persistent identifier. This includes 
modeling software as well as all software for data (re)formatting, conversions, filtering, 
analysis, and visualization. 



 12 

• Document the digital provenance of results by explicitly describing the series of 
computations and their outcome in a workflow sketch, a formal workflow, or a 
provenance record, possibly stored in a shared repository and citable with a unique and 
persistent identifier. 

Figure 1 characterizes a GPF and highlights the differences with a reproducible paper. A 
reproducible paper focuses on the publication of data, software, and provenance of the results so 
that they can be re-run and reproduced. Those are all desirable characteristics of a GPF. In 
addition, a GPF focuses on the sharing of all research products, and emphasizes their publication 
in public repositories with open licenses, unique and permanent identifiers that make them 
citable, and appropriate metadata to document their characteristics. 

Given the current technical and cultural limitations to performing our envisioned leap in 
geoscience publications, we expect that it will take some time for papers in geosciences to satisfy 
all these criteria, and we acknowledge that papers that are not data- or software-focused (e.g., 
collection of physical samples or laboratory experiments) may not benefit from adopting them. 
Common challenges include the reluctance of co-authors to share specific data or software, the 
difficulty of fully describing experiments, the inability to share due to technological limitations 
(size, dependencies, existing repositories, infrastructure, etc.), and the necessity to simplify the 
approach for broad use (i.e., generating figures with easier formatting than generally used in 
published form). When faced with such challenges, GPF authors should reflect on the difficulties 
they face, pursue workarounds, and propose areas for future improvements. 

We note that the citation of provenance and the publication of provenance in a public repository 
are both optional. Ideally, both would be done by GPF authors, but we recognize the lack of 
shared provenance and workflow repositories in geosciences and therefore are recommended 
here although considered optional. 

4. Suggested Best Practices and Current Challenges  

This section describes recommended best practices on how to document data, software, and 
provenance, and to uniquely identify and cite these digital objects.  

Table 1 provides a proposed author checklist consisting of twenty recommendations for creating 
a GPF, and serves as a roadmap for this section. These best practices were compiled from 
recommendations by both scholars and organizations concerning digital publications (e.g., [RDA 
2015; CODATA 2013; DataCite 2015; FORCE11 2014; ESIP 2012; Starr et al 2015; Uhlir et al 
2012; Downs et al 2015; Ball and Duke 2012; Mooney and Newton 2012; Goodman et al 2014; 
Garijo et al 2013; Altman and King 2007]). They were developed as some of the authors of this 
article endeavored to write a GPF about their own work. 
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Figure 1.  A Geoscience Paper of the Future (GPF) includes data, software and provenance as 
expected in reproducible publications, but also includes desirable features in open science and 
digital scholarship: 1) sharing of data, software, and other research products in public 
repositories, 2) use of open licenses, 3) metadata that describes the characteristics of data, 
software, and other research products, 4) persistent unique identifiers for data, software, and 
other research products, and 5) citations for all digital resources mentioned in the paper.  GPF 
authors may find practical impediments to follow some of these recommendations, and in that 
case they should state their desire to do so and document the reasons for not following them. 
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Table 1.  A proposed checklist for GPF authors, with twenty recommendations that can guide them to assemble 
the information that should be included in a GPF. 

Category Applicability Recommendations 
Data 

Accessibility 
Initial data, significant 
intermediate results, and 
final results 

D1 Datasets should be published in a publicly accessible 
location with a permanent unique identifier 

D2 Datasets should have a license 

D3 Datasets should be cited in the paper 

Data 
Documentation 

Initial data, significant 
intermediate results, and 
final results 

D4 Datasets should have general-purpose metadata 
specified 

D5 Dataset characteristics should be explained in detail 

D6 Dataset origins and availability of related datasets 
should be documented 

Software 
Accessibility 

Software used to process 
initial data and to generate 
any intermediate or final 
results 

S1 Software should be published in a publicly accessible 
location with a permanent unique identifier 

S2 Software should have a license 

S3 Software should be cited in the paper 

Software 
Documentation 

Software used to process 
initial data and to generate 
any intermediate or final 
results 

S4 Software function and purpose should be described  

S5 Software download and execution requirements should 
be documented 

S6 Software testing and reuse with new data should be 
documented 

S7 Software support for extensions and updates should be 
mentioned 

Provenance 
Documentation 

Provenance of all 
computational results 
reported in the article, 
including figures, tables, 
and other findings 

P1 Derivations of newly generated data from initial data 
should be provided 

P2 Software execution traces for newly generated results 
should be provided 

P3 Versions and configurations of the software should be 
specified 

P4 Parameter values used to run the software should be 
specified 

Methods 
Documentation 

Computational methods 
that are generally 
applicable to data other 
than the data in the paper 

M1 Compositions of software that form a general reusable 
method should be specified 

M2 Dataflow across software components should be 
described 

Authors 
Identification 

Authors of the paper, and 
of any new data and 
software cited in the paper 

A1 Authors have a permanent unique identifier 
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 Our recommendations and best practices are independent of the particular area of research, 
computing platforms and languages, or approach to publishing. For those seeking more specific 
advice, [eScience 2011] provides an excellent trove of pointers to resources for improving 
scholarly communications, including not just community repositories but also modern science 
communication such as blogging, screencasting, and collaborative idea generation. 

4.1 Making Data Accessible  
All the input data and results should be made accessible, as well as any key intermediate data 
that may help others understand or reproduce the work being described in the paper.  

4.1.1 Data Accessibility: Location, Citation, and License 
Location (D1): Data should be in a publicly accessible location. Many researchers include in 
their papers links to datasets published in their lab or personal web sites, which is easy and 
convenient. However, studies have shown that the majority of the articles that use such links 
have at least one broken link within two years [Klein et al 2014; Dellavalle et al 2003], and the 
availability of data declines quickly over time [Vines et al 2014]. An alternative and more 
desirable approach is to use a data repository. Many scientists view the sharing of data as 
onerous, but there are now many general repositories that make it very easy to publish data 
[Tenopir et al 2011; Van Noorden 2013]. There are many data repositories available to scientists 
that ensure longevity and accessibility. Several meta-registries contain pointers to data 
repositories, such as re3data [Re3data 2015; Pampel et al 2013]. Data repositories can be 
institutional, discipline-specific, or generic to accommodate “orphan” data [Vision 2010]. They 
differ in their community of use, search-ability/discoverability, ease of use, degree of curation 
(e.g., organization and preservation), and reputation. Repositories range from general domain 
and not curated [Figshare 2015; Zenodo 2015; Dryad 2015], to more focused and curated (e.g., 
ACADIS [ACADIS 2015], IEDA [IEDA 2015], NCEI [NCEI 2015], Pangaea [Pangaea 2015]), 
and finally to the highly specific, managed, and curated (e.g., AGDC [AGDC 2015], NASA’s 
DAACs [DAACs 2015], and the USGS Science Data Catalog [USGS 2015b]). Curation takes 
time, since it requires adding metadata that is consistent with other entries in the repository. Cost 
is also an important issue to many researchers, especially those early in their careers. Many of 
these repositories are free, but have a limit in the size of the data they accept. Some repositories 
are popular with specific disciplines or communities, which increases the chances of data reuse 
by others. The choice of a repository should also take into account other aspects of data 
management planning. Considerations include data formats (which may be proprietary or non-
durable), data integrity (file naming/versioning, backups, ‘permanent’ availability, etc.), data 
context (through documentation and metadata), discoverability of data, ease of access, ease of 
use, ease of citation, licensing, and, where appropriate, privacy concerns. All of these factors 
should be weighed when deciding on a data repository. 

License (D2): The data should have a license that specifies any constraints for its reuse, 
including how the authors should be acknowledged, whether it can be modified before 
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redistributing, or whether it can be used for commercial purposes. A widely-used set of licenses 
is offered by Creative Commons [CC 2015]. The most permissive licenses are CC-BY, which 
allows any modifications and uses provided attribution is stated, and CC-0, which waives all the 
rights of the creators to reuse by others. 

Citation (D3): Data can be cited within text much like an article would be cited, or it can be 
cited in a special resources section or in the acknowledgements section. Some journals have 
specific guidelines for data citation. While there is no universal standard for data citation, 
agreement is emerging among various style guides, institutions, and publishers in that a data 
citation should include author names, the name of the dataset, retrieval and/or publication date, 
publisher (or repository) name, version, access date, and access information in the form of a 
persistent unique identifier. Persistent unique identifiers to cite data include persistent URLs 
(PURLs) and Digital Object Identifiers (DOIs) [DeRisi et al 2013]. A PURL is a URL that is 
permanent and will not change, but when accessed it redirects to another URL in a local system 
(e.g., a lab web site) that can be changed over time. The creator of a PURL must update the link 
if the URL changes.  The PURL can be cited in the paper, and the authors should ensure that the 
redirection address is updated if anything changes in their local system. A PURL can be obtained 
through services such as the Online Computer Library Center (OCLC)’s PURL service [PURL 
2015]. A DOI is a character string used to uniquely identify a digital object, such as an electronic 
document. DOIs are only issued by authorized sites, and most data repositories issue DOIs. A 
DOI consists of a publisher ID (prefix) and an item ID (suffix), separated by a forward slash (/).  

4.1.2 Additional Requirements and Issues 
Taking data from public repositories: While many researchers collect or create their own 
datasets, many researchers take data from publicly available repositories. The NASA Global 
Change Master Directory is a recommended tool to discover data sets in geosciences [GCMD 
2015]. Data repositories often indicate the license agreements to be followed and specify how the 
data extracted should be cited.  

Using data from colleagues: Frequently, researchers will incorporate datasets from a combination 
of sources including data obtained formally or informally from colleagues. In this case, the 
author must make sure to have their permission to publish it taking special care in clearly 
defining the authorship and the licensing conditions. The main challenges of using data from 
colleagues are having access to metadata for the case of raw data and having access to 
provenance for the case of processed data sets.  

Publishing intermediate data: Intermediate data should be published when data preparation steps 
are hard to re-execute or understand, or when there are manual processes involved. These steps 
take raw data (from local or external repositories) and produce data sets in the desired formats 
for further use within the analysis process. Data preparation includes quality control (removal of 
outliers, gap filling, etc.), unit conversions, corrections for time zone differences or daylight 
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savings time, and extraction of subsets from a larger dataset. These processes can change many 
of the data’s characteristics including format, structure, quality, accuracy, and precision. It is 
important to document data preparation steps, and to publish any key intermediate data 
generated. 

Large datasets: In many disciplines, the availability of datasets with high spatial/temporal 
resolutions creates a challenge. Although data storage and transport costs are getting cheaper, 
sharing and transferring large datasets is still a challenge. Therefore, it is essential to prepare 
large datasets in efficient formats supported by repositories, software, and visualization tools. 
For example, NetCDF and HDF are widely used for meteorological data [NetCDF 2015; HDF 
2015]. If a trusted discipline-specific repository is not available (or is too costly), general-
purpose repositories can be used that accept unlimited data sizes (e.g., Dash [Dash 2015]) or that 
continue to increase the sizes of the datasets allowed (e.g., [Zenodo 2015; Dryad 2015; GitHub 
2015a]). One possibility is to publish a sample of the data used, or to document datasets with 
extensive metadata about the characteristics. 

Timing data and paper publication: Some researchers and some publications impose 
moratoriums on data, which argues for coordination of the release of data and papers.  While 
some journals require data to be archived and available through a trusted repository, some 
repositories will require data to be documented and published in a peer-reviewed journal (e.g. 
Dryad Digital Repository), often creating a chicken-and-egg situation.  This situation must be 
streamlined for scientists in the future.   

4.2 Documenting Data by Specifying Metadata 
Once data are available for public access, it is important to describe them in a structured form 
using metadata so that other researchers can understand what the data represent as well as enable 
them to find the data through queries and reuse them for their purposes. Metadata can take many 
forms, from unstructured text to standardized, structured, machine-readable, extensible content. 
Many repositories provide a specific format for metadata using a formal standard.  

4.2.1 Documenting Data: General-Purpose Metadata and Dataset Characteristics 
General-purpose metadata (D4): This is general information about the 
who/what/when/where/why/how of the dataset. It should include the creator, date, funding 
agencies, purpose of the study, what was collected, timeframe and area covered, contact 
information, and other basic information about a dataset. Most repositories request this kind of 
metadata.  

Dataset characteristics (D5): Scientifically relevant characteristics of the dataset should also be 
documented. For example, the sensor used to collect data, descriptions of column headers in 
tabular data, units of measurement, and other characteristics that affect usability of the data. 
Different disciplines and areas of research care about different kinds of data characteristics, but 
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there are many efforts to standardize how this kind of metadata is organized and collected. Most 
of the common formats for storing large datasets (e.g. NetCDF, HDF, XML) allow for inclusion 
of detailed descriptions concerning the specifics of each variable (average or instantaneous, time 
zone, long variable names, time step, spatial range, etc.). Several ISO metadata standards (e.g., 
ISO-19139 [ISO 2007], ISO-19110 [ISO 2005]) are popular in geosciences.  Some discipline 
specific standards, such as the Climate and Forecast (CF) metadata conventions for NetCDF files 
[CD 2011], are increasingly gaining acceptance in their communities.  

Data sources and related datasets (D6): Other researchers may be interested not only in 
reusing the data in a particular article, but may also want to find similar data that suit their 
purposes. For example, a paper may use climate data for a particular region but other researchers 
may want to apply the same analysis for a different region of interest. For this reason, it is useful 
to document what data sources could be accessed in order to retrieve data similar to what is used 
in a paper. If the dataset is extracted from a larger database, or is one of several datasets collected 
for the same consortium project with multiple PIs covering different aspects of a large study, it is 
worth mentioning the existence of the other related datasets, the project that collected them, and 
the program that funded the work. 

4.2.2 Additional Requirements and Issues 
Metadata standards: In some disciplines there are coordination efforts to develop extensive 
metadata standards (e.g., [Moine et al 2014] for climate). Some specific examples of metadata 
standards, both general and domain specific, include the Dublin Core Metadata Terms (a domain 
independent metadata standard for attribution) [DCMI 2012], the Ecological Metadata Language 
(EML) [Fegraus et al 2005], the Water Markup Language (WaterML) [WaterML 2015], and 
FASTA for genetic sequence information [Pearson and Lipman 1988]. More disciplines in 
geosciences are organizing community efforts to develop standards for metadata. 

Data about physical samples: When digital information is generated from physical samples, the 
sample itself should be referenced and cited. The International Geo Sample Number (IGSN) was 
created for this purpose.  

4.3 Making Software Accessible 

When considering software availability, we often think about the big packages or models. But in 
addition, any other software written to transform data, or generate a plot, or any ancillary data 
manipulation should be made publicly available. This kind of pervasive software sharing could 
greatly benefit scientific communities by reducing development cost, saving time to develop 
software, and improving the quality of the software through collaboration between software 
developers and end users.  
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4.3.1 Software Accessibility: Location, License, and Citation 

Location (S1): Software can be made public by hosting it in code repositories, such as GitHub 
[GitHub 2015], SourceForge [SourceForge 2015], and Bitbucket [Bitbucket 2015]. Code 
repositories offer version control systems to facilitate code evolution and collaboration among 
developers as well as users.  

License (S2): Contrary to a copyright automatically applied to software when it is created to 
grant the creator exclusive rights as an intellectual property, an open source license is a 
mechanism for defining the level of control required by creators over their source code. Open 
source licenses specify whether the creator allows modifications of source code and/or the 
distribution of the modified source code under the same terms as the license of the original 
source code. These licenses also specify whether the creator wants to be acknowledged when the 
software is reused. The Open Source Initiative (OSI) offers widely used open source license 
options [OSI 2015], such as the GNU General Public License (GPL), the MIT license, the 
Berkeley Software Distribution License (BSD), and the Apache Public License (APL). Without a 
license, the creator is not protected by reuse of their software in ways they did not intend it to be. 

Citation (S3): Citation of the software can assure that the developers get credit. Like with data, 
software can be cited through a DOI or a PURL. Some software repositories assign DOIs for 
particular software versions.  For example, GitHub offers DOIs through the Zenodo data 
repository [GitHub 2015b]. Some researchers choose to use data repositories to publish their 
code and get a DOI for software citation, keeping the code and the data in the same site.  

4.3.2 Additional Requirements and Issues 
Domain-specific software repositories: Software repositories for model software in geosciences 
include the Community Surface Dynamics Modeling System (CSDMS) [CSDMS 2015; 
Peckham et al 2013], the Earth System Modeling Framework (ESMF) [ESMF 2015; Hill et al 
2004], the Computational Infrastructure for Geodynamics (CIG) [CIG 2015; Morozov et al 
2006], and the VHub collaborative volcano and risk mitigation hub [VHub 2015]. However, they 
do not include other ancillary software, such as code for data preparation or data reformatting.  A 
great advantage of using these repositories is that they often enable scientists to integrate and run 
models at scale. Another significant advantage is that they enable model coupling (i.e., executing 
several models in consonance) through the specification of common interfaces and automatic 
regridding to standardize the granularity and scale of the models [Peckham 2015]. 

Making software executable by others: Although it is recommended that code is shared as it is 
written [Barnes 2010], there are a few best practices for preparing code for publication.  File 
paths or variable settings may be better done as parameters in configuration files, so that when 
those need to be changed the source code itself does not have to be changed.  When possible, 
code should not have dependencies on the particular operating system or directory structure, so if 
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there are any it is worth investigating general ways to accomplish the same using more portable 
commands. The dependencies of the software on other libraries or programs must be explicitly 
documented. Another valuable step in enabling others to run software is to provide test cases that 
include data files that are known to work with the software, to explain the steps involved in the 
execution, and the expected results. However, despite best efforts put in preparing users’ guides 
and sharing test cases, the ultimate voucher for the enablement of others to execute software is 
user feedback. A major advantage of using software sharing sites is that they enable this kind of 
user feedback. This feedback is perhaps the highest benefit of the time-consuming process of 
teaching others how to execute software that will eventually lead to better software. 

Software updates: Another aspect of third party software execution, albeit often overlooked, is 
the capacity to enable automatic installation and execution of software when updates are made. 
This is called Continuous Integration (CI), and there are a variety of tools to support it (e.g. 
Travis-CI [Travis-CI 2015], Jenkins [Jenkins 2015]). As software grows in size or in number of 
contributors, the automation of repetitive steps such as installation and testing can lead to faster 
debugging and significant time savings. Enabling such capabilities is relatively straightforward 
once the installation steps are fully described and test cases are made available. The specification 
of these instructions can all be included in a series of small simple instruction files (e.g. shell 
scripts). Therefore, the relatively small additional burden of translating software dependency and 
short tests into a machine readable format can have great benefits.  

Legacy software: Like data and other artifacts of research, it is common for software code to 
undergo a period of use by an individual or small group of researchers only to be abandoned, 
lost, or become outdated. Yet these “legacy” codes may be important assets to some studies, and 
can aid researchers if unearthed and updated for long-term access and reuse. In many cases, with 
modest effort a legacy code can be documented and potentially translated or moved into a 
maintainable code repository. Recreating or refactoring a program may introduce errors, bugs, or 
other issues not present in the original code. Yet after committing the time and effort to develop 
a useful code, it is worth investing the additional effort needed to facilitate its reuse in the future. 
Documentation of recovered software can aid future development and maintenance or reuse of 
that code. Common approaches to document software systems include writing natural language 
documents, creating formal specifications, producing standard design documents and providing 
interpretable test cases [Tonella and Potrich, 2005]. Any of these documentation formats will 
always be useful to a researcher attempting to revive legacy code. A difficulty in reusing legacy 
code arises when the existing documentation does not match the actual code. Another major 
difficulty is that to run some legacy code again may require recreating the older versions of run-
time libraries or operating systems, which may not be available. 

4.4 Documenting Software by Specifying Metadata 
Metadata documentation describes software so that others can find the software, understand what 
it does, run it, do research with it, get support, and contribute to future software development. It 
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is useful to distinguish between code repositories and software registries. The code itself can be 
deposited in a code repository (such as those mentioned in Section 4.3), and the metadata can be 
stored in one or more software registries that are linked to the code repository entry for the 
software. Documenting software within a software registry helps the software author describe 
their product while also making it more discoverable and open to use by a larger community. In 
geosciences, model repositories often serve as software registries and collect extensive metadata 
(e.g., CSDMS).  General software registries, such as OntoSoft [Gil et al 2015], can be linked to 
code repositories and automatically extract metadata from them. 

4.4.1 Documenting Software: Function, Execution, Testing, and Updates  
Function (S4): This describes the intended use of the software, its purpose and function. The 
exact inner workings and modeling details may be very complex and be best described in a 
scientific article, but this kind of metadata highlights the main usage characteristics of the 
software so others understand what to use it for. Representative information is needed from the 
simplest perspective of clearly labeling units of measure, all the way to documenting data models 
and core algorithmic structures to communicate the underlying assumptions, key values, 
relational definitions among attributes, and fundamental descriptions used for a specific research 
endeavor.  

Execution (S5): This metadata points to documents that describe what is needed to install and 
run the software, as well as any run-time dependencies and requirements (e.g., libraries).  

Testing (S6): This metadata refers to test data provided to enable others to run the software and 
check whether it works. Testing information should include input data and parameter 
configurations, as well as the output data that should be expected if the software is running 
correctly.  

Updates (S7): Any commitments of support for software are useful to those considering using it. 
This can include a specification of a point of contact to submit bug reports and requests for 
extensions, a mailing list to send questions and get help with any potential problems, and a 
description of how any future releases are planned and disseminated.  

4.4.2 Additional Requirements and Issues 
Domain-specific software metadata: To describe the function and purpose of scientific software, 
it is best done using standard vocabularies in the domain. The variables and parameters used 
within a piece of code would then be in alignment with standard naming rules, such as the 
CSDMS Standard Names [Peckham 2014].  

4.5 Documenting the Provenance of Results 
In a computational sense, provenance is an explicit documentation of the data used and the 
processing performed to reach a scientific result. Provenance fully links together all of the 
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(digital) objects used in the GPF, going from data, through any other software or code, and 
finally to completed results and figures. A provenance record needs to be provided for every 
figure, table, or new dataset shown in a paper. This record should describe in detail what was 
actually done, that is, not just what software was used but how it was configured and what 
specific parameter values were used in the runs that led to the results shown in the paper.  

4.5.1 Documenting Provenance: Derivation, Execution, Versions, and Parameters  
Derivation traces (P1): A derivation trace can show conceptually how the data were used by the 
software, and what intermediate and final results were obtained. Traditionally, this is described 
in the “Methods” section of a paper, usually in the form of text. This format is limited by its 
inability to fully convey the complexity inherent in computational research, and should therefore 
be complemented these derivation traces. These can be very effective to convey important details 
to the reader, and are the first step towards a more complete provenance. Derivation traces can be 
shown as a graphical sketch, or as a table. They can be sketched using readily available graphics 
tools.  

Execution traces (P2): In addition to a sketch of the derivation trace, fully detailed execution 
traces can be provided to document the execution details. These execution traces may include 
statements printed from the code that indicate what is happening. The execution traces must 
specify unique identifiers for data and software, assigned as described in the sections above. A 
provenance standard, such as W3C PROV [Gil and Miles 2013; Moreau et al 2013], may be 
followed to represent execution traces and enable their analysis and reuse.  Provenance traces 
can also be obtained from workflow systems [Taylor et al 2007; Gil et al 2007; Deelman et al 
2012], such as Pegasus [Deelman et al 2005], Taverna [Oinn et al 2006], Vistrails [Callahan et al 
2006], and Kepler [Ludaescher et al 2006]. The derivation traces and execution traces may be 
combined in cases where the two would be very similarly specified in a paper. 

Versions (P3): The versions should be indicated for all the software used to obtain the results in 
the paper. Software often evolves and can have many releases over the years, particularly 
commercial software. Different versions may offer different functionality, some may disappear 
over time and some may be incorporated in a new release. The versions of the software should be 
an integral part of a provenance record. 

Parameters (P4): A detailed provenance record shows all the data flow across software 
components, corresponding to the detailed command line invocations and parameter values used. 
The parameters may be in configuration files, and should be provided alongside with the data 
used in the paper. 

4.5.2 Additional Requirements and Issues 
Publishing and citing provenance: Ideally, the provenance records for a paper would be 
published in a public repository and cited in the article. This would put provenance at the same 
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level of importance as the data and software used in the paper, which is appropriate. However, 
unlike data and software, there are no public shared repositories for scientific provenance 
records. It is possible to publish provenance in a data repository, but provenance records have 
unique structure that should be searchable and comparable. In the future, shared provenance 
repositories may emerge to enable provenance discovery, comparison, and reuse. 

Data preparation steps: Data preparation aspects are often not mentioned in articles, but are 
crucial to documenting the provenance of results in a proper manner. Data preparation can take a 
significant amount of effort, and may include important choices regarding quality control, 
imputation for missing values, and use of standards. 

Manual steps to create figures: A special case is the creation of data visualizations that go 
beyond the computational generation of results. Indeed, figure production is often as much an 
artistic endeavor as it is a computational process. Thus, it is incumbent upon the author to 
identify if and when certain visualization steps must be prescribed (or proscribed) for readers to 
fully reproduce a paper’s results. Otherwise, providing the source data is sufficient. While 
sometimes only a manual process is possible (e.g. using a GIS to create a map), many tools (e.g., 
MATLAB [MATLAB 2015]) allow manual creation of a figure and will then allow subsequent 
generation of the code needed to automatically generate it. Taking this concept one step further, 
new tools (e.g., Plotly [Plotly 2015]) can generate fully shareable, interactive data plots. 

Size of the provenance records: In some cases, the provenance records may be very large and 
complex to describe. Some research involves running dozens of codes, and in those cases 
provenance can be documented at varying levels of detail. At the simplest level is a derivation 
trace that sketches the most important steps and the data flow among them. A more detailed 
execution trace can document all the steps followed. Other research may involve running 
experiments with hundreds of datasets. In those cases, the provenance of a few runs can be 
documented in detail, and the others described at a higher level.  

Reproducibility versus inspectability: Reproducibility requires re-running the experiments in the 
article, but inspectability simply requires examining the provenance records provided. While 
reproducibility takes significant effort, enabling inspectability can be relatively straightforward. 
Authors should make inspectability very easy for any reader of a paper, and make reproducibility 
practical by making the effort required small enough that it is not out of the question for other 
researchers. 

4.6 Documenting the Methods 
While provenance documents the specific executions that lead to the results presented in the 
paper, the methods refer to the underlying general strategies that can be applied to other data. 
Scientific articles typically include a “Methods” section that describes them. However, 
computational methodology should be explicitly documented. 
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4.6.1 Documenting Methods: Composition and Dataflow  
Composition (M1): This documents the various steps in the method in terms of how software is 
composed together. This composition is sometimes a sequential pipeline, but it may consist of 
many interconnected and interdependent steps. The composition can be indicated as a simple 
flow diagram, or can be formally specified as a computational workflow using a workflow 
system such as those mentioned in Section 4.5.1.  Each workflow system offers different 
capabilities that suit different requirements and communities [Deelman et al 2012; Taylor et al 
2007].   

Dataflow (M2): The dataflow between the steps indicates how initial data would be processed 
by software, what intermediate datasets would be generated, and how the results would be 
obtained. The composition may already include this information, but if it does not it should be 
provided. 

4.6.2 Additional Requirements and Issues 
Steps involving samples: In geosciences, some of the steps may involve collecting and handling 
samples, or processing materials in the laboratory. These steps are not computational and may 
involve manual intervention.  It is important to document these steps in as much detail as 
possible, particularly where they result in digital data that is to be processed computationally. 

4.7 Author Identification 
Much like datasets and software must have a permanent unique identifier, researchers must have 
one as well. The name alone is not sufficient to identify a person uniquely, and the institution or 
other affiliation information helps but it is often transient information.  

4.7.1 Author Identification: Unique Identifiers  
Unique identifiers (A1): Authors should get a persistent unique identifier that is associated with 
all their digital research products. A common identifier for researchers is the Open Researcher 
and Contributor ID (ORCID) [ORCID 2015], which can be easily obtained from orcid.org. 

4.7.2 Additional Requirements and Issues 
Authorship of data and software citations: Author identifiers should also be used in the data and 
software citations of the article. Ideally, all digital research products of a researcher should be 
linked to their identifier. 

Authorship of data and software contributions: Key contributors of data and software who are 
not authors of the GPF should also be assigned a persistent unique identifier to be used in the 
attribution of data and software cited in the article. This helps create a healthy ecosystem of 
credit and recognition through citation to those who do not co-author scientific publications. 
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Figure 2.  A high-level roadmap for authors of a Geoscience Paper of the Future (GPF), with 
pointers to popular resources for publication and licensing of scientific research products. 
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4.8 Summary: Preparing a GPF for Publication 

Figure 2 provides a roadmap of the best practices and widely-used resources discussed in this 
section, aligned with the GPF Author Checklist shown in Table 1.  

In summary, to prepare a GPF for publication, several key aspects of the research much be 
documented: 

1. Data accessibility and documentation: Generally data that are used from the initial point 
of an analysis or evaluation, through any significant intermediate results, and data 
generated for the final results of research should be made accessible and documented. To 
achieve data accessibility data should be (D1) published in an accessible location with a 
permanent unique identifier, (D2) datasets should be published with an accompanying 
license to delineate acceptable reuse and dissemination options, and (D3) datasets should 
be cited in the accompanying GPF. In addition, data documentation is needed to assure 
that the representative values and parameters can be understood by others. Basic 
documentation for data should include the following (D4) specification of general 
purpose metadata, (D5) dataset characteristics should be explained in detail, and (D6) 
dataset origins and availability of related datasets should be documented. 

2. Software accessibility and documentation: Like data, the software used to process initial 
data and to generate any intermediate or final results for research needs to be documented 
and shared with attention to a similar set of recommendations. (S1) The code and an 
executable version of software should be published in an accessible location or repository 
with a permanent unique identifier, (S2) assigning a license that defines acceptable use 
and distribution, and (S3) citing the software in the article of reference or GPF. 
Documenting software requires (S4) a clear description of the function and purpose of the 
software, (S5) descriptions of download and execution requirements or dependencies, 
(S6) documentation describing how to test and reuse with new data, and (S7) a 
description of the expected levels of software support, if any, for extensions and updates. 

3. Provenance documentation: The provenance of an information source reports the 
origination and chain of transformations used to generate all computational results 
reported in a GPF article, including figures, tables, and other findings. To assure 
complete documentation of provenance GPF authors should include descriptions of the 
(P1) derivation traces of newly generated data from initial data, (P2) traces of software 
executions used for newly generated results, (P3) versions and configurations of the 
software, and (P4) parameter values used to run the software. 

4. Methods documentation: Methods that are applied to datasets or used to analyze 
information related to the scientific research, particularly computational methods applied 
to data other than the data in the paper should be documented. Methodological 
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documentation should present information that enables the replication of computational 
approaches and requires reporting on the (M1) compositions of software that form a 
general reusable method and (M2) a description of dataflow across software components. 

5. Author identification: Assuring that research efforts are transparent, reproducible and 
accessible while also connecting credit for the work and impact of a particular 
investigator can only be achieved if each author is linked to the products for the research 
through the use of a permanent unique identifier (A1). 

5. Discussion 

As we mentioned earlier, major challenges to improve open science, reproducibility, and digital 
scholarship in geosciences include the lack of clarity on best practices, the lack of awareness of 
those best practices, and the level of effort involved. The vision of Geoscience Papers of the 
Future helps address these barriers through a concise and practical articulation of requirements 
and associated best practices. In our own experiences in writing our own GPFs, the availability 
of these guidelines turned impossible into manageable. 

Having a set of guidelines and appropriate training expedites the process of producing a 
complete GPF. Given the broad extent of the geosciences, researchers in their particular areas of 
study need to communicate among themselves to finesse their own definition of a complete GPF. 
There are many choices for sharing and documenting data and code, and each field of study may 
define the aspects of our proposed GPF vision that best suit their needs. Defining minimum 
requirements and preferred repositories for a particular research area would make digital objects 
more usable.  

From our perspective, the greatest roadblock in implementing the proposed vision for geoscience 
papers of the future is the lack of knowledge in the community about best practices and available 
tools to implement them, and lack of critical mass usage. Increased communication and 
education on existing technology, potential limitations, and best practices will be key to making 
this vision a reality.  

The level of effort involved in following these best practices is not negligible, but it is also not 
unreasonable. There is no question that there is a learning curve, both in grasping the basic 
concepts behind the best practices and in implementing them with an approach and tools that suit 
an individual researcher. The more scientists that adopt these best practices and have experience 
writing a GPF, the easier it will be for others to find a colleague within arm’s reach who can help 
with shortcuts and commonly used tools. These best practices are technically very simple, so 
they are within reach for everyone to learn in a few hours.  
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The effort required is greatly reduced by available tools and platforms. There are already many 
tools for publishing data and software, for documenting metadata, for obtaining identifiers, for 
capturing provenance and workflow (although this remains even less integrated in geoscience 
workflows), and many other aspects mentioned in this article. Although they are not yet 
seamlessly integrated with geosciences practice, they improve constantly and for many scientists 
they become a staple once they are discovered. 

The investment related to the implementation of these best practices can have many benefits to 
the authors. Data sharing makes authors double-check their work, improving science at the first 
stage as well as future reuse. Software sharing can improve the practices of scientists who are 
informally-taught coders. A payoff for sharing digital objects is that it improves science by 
making available better quality products resulting from the spontaneous feedback and sometimes 
curation provided by users of the shared digital objects. Some of the best practices can be 
implemented with tools that save time and can generate some of the content for the article (e.g., 
writing the Methods section by showing a workflow and describing it).  

With very minimal effort, it is still possible to implement an important subset of the best 
practices recommended here. Each scientist should find the right balance with regards to the 
effort needed and the best practices that are suitable for their own needs, their field of research, 
and the broader community. 

It is harder to invest the effort as an afterthought of the research and to document the paper once 
the work has been completed. It takes more time to write a GPF in retrospect than it would to 
document the work from the beginning. It is often said that the quality of data description and 
documentation is inversely proportional to the time since data collection and analysis, so it is 
important for scientists to continuously describe and document data whenever possible. A 
continuous process of provenance documentation may, in fact, be a helpful practice for authors 
to ensure that all data and methods are fully understood, documented, and shared before any 
results are interpreted and considered for publication.  

Scientists may soon be forced to document their papers in a manner similar to the GPF best 
practices described here. Publishers and funders are increasingly requiring the kinds of 
documentation that a GPF would include, in order to improve open access to research products, 
reproducibility, accountability, and credit. The best practices discussed in this paper can be easily 
taught to junior researchers who can adopt them in their daily practice and make them routine in 
their work. 

6. Conclusions and Future Work 

This paper motivates the vision for geoscience papers of the future, and describes best practices 
and their recommended implementations for GPF authors based on open science practices, 
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reproducibility, and digital scholarship. It also articulates twenty specific recommendations for 
GPF authors to facilitate their uptake in the geoscience community. 

While we have endeavored in this paper to disseminate best practices and available tools, a major 
roadblock is that they are not fully integrated into the processes and systems currently used by 
geoscientists. Many of these tools and platforms are insular and the overall process for writing a 
GPF requires using several of them. There are lots of moving parts that need to be coordinated, 
which can be a challenge. Publication embargo dates complicate matters and are not handled by 
many of these tools. As a result, they introduce a burden on the geoscientist and, although many 
will agree with the need for reproducibility and transparency, the barriers remain high. Close 
collaborations between computer scientists and geoscientists are needed to develop tools that 
reduce these barriers by becoming an essential part of geoscience research workflows.  

Beyond the GPF vision, additional enhancements to geosciences papers include making the 
methods composable with one another, making the main claims of a paper explicit in formal 
logic, and comparing alternative hypotheses or contradictory results across papers. The more 
explicit and documented papers are, the more likely it is that we will have automated means to 
answer common questions such as “What is known in the literature about X?”, which scientists 
face all the time but take a lot of effort to research.  Such explicit and formal representations of 
papers would also support intelligent systems in geosciences [Gil and Pierce 2015].  These 
explicit representations of the content of papers would significantly improve the productivity of 
geoscientists and greatly facilitate cross-disciplinary collaborations.  Ultimately, these explicit 
representations of scientific knowledge will significantly amplify the capabilities and impacts of 
geosciences research. 
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